Skip to main content
Open In ColabOpen on GitHub

LangChain Expression Language Cheatsheet

This is a quick reference for all the most important LCEL primitives. For more advanced usage see the LCEL how-to guides and the full API reference.

Invoke a runnable​

Runnable.invoke() / Runnable.ainvoke()​

from langchain_core.runnables import RunnableLambda

runnable = RunnableLambda(lambda x: str(x))
runnable.invoke(5)

# Async variant:
# await runnable.ainvoke(5)
API Reference:RunnableLambda
'5'

Batch a runnable​

Runnable.batch() / Runnable.abatch()​

from langchain_core.runnables import RunnableLambda

runnable = RunnableLambda(lambda x: str(x))
runnable.batch([7, 8, 9])

# Async variant:
# await runnable.abatch([7, 8, 9])
API Reference:RunnableLambda
['7', '8', '9']

Stream a runnable​

Runnable.stream() / Runnable.astream()​

from langchain_core.runnables import RunnableLambda


def func(x):
for y in x:
yield str(y)


runnable = RunnableLambda(func)

for chunk in runnable.stream(range(5)):
print(chunk)

# Async variant:
# async for chunk in await runnable.astream(range(5)):
# print(chunk)
API Reference:RunnableLambda
0
1
2
3
4

Compose runnables​

Pipe operator |​

from langchain_core.runnables import RunnableLambda

runnable1 = RunnableLambda(lambda x: {"foo": x})
runnable2 = RunnableLambda(lambda x: [x] * 2)

chain = runnable1 | runnable2

chain.invoke(2)
API Reference:RunnableLambda
[{'foo': 2}, {'foo': 2}]

Invoke runnables in parallel​

RunnableParallel​

from langchain_core.runnables import RunnableLambda, RunnableParallel

runnable1 = RunnableLambda(lambda x: {"foo": x})
runnable2 = RunnableLambda(lambda x: [x] * 2)

chain = RunnableParallel(first=runnable1, second=runnable2)

chain.invoke(2)
{'first': {'foo': 2}, 'second': [2, 2]}

Turn any function into a runnable​

RunnableLambda​

from langchain_core.runnables import RunnableLambda


def func(x):
return x + 5


runnable = RunnableLambda(func)
runnable.invoke(2)
API Reference:RunnableLambda
7

Merge input and output dicts​

RunnablePassthrough.assign​

from langchain_core.runnables import RunnableLambda, RunnablePassthrough

runnable1 = RunnableLambda(lambda x: x["foo"] + 7)

chain = RunnablePassthrough.assign(bar=runnable1)

chain.invoke({"foo": 10})
{'foo': 10, 'bar': 17}

Include input dict in output dict​

RunnablePassthrough​

from langchain_core.runnables import (
RunnableLambda,
RunnableParallel,
RunnablePassthrough,
)

runnable1 = RunnableLambda(lambda x: x["foo"] + 7)

chain = RunnableParallel(bar=runnable1, baz=RunnablePassthrough())

chain.invoke({"foo": 10})
{'bar': 17, 'baz': {'foo': 10}}

Add default invocation args​

Runnable.bind​

from typing import Optional

from langchain_core.runnables import RunnableLambda


def func(main_arg: dict, other_arg: Optional[str] = None) -> dict:
if other_arg:
return {**main_arg, **{"foo": other_arg}}
return main_arg


runnable1 = RunnableLambda(func)
bound_runnable1 = runnable1.bind(other_arg="bye")

bound_runnable1.invoke({"bar": "hello"})
API Reference:RunnableLambda
{'bar': 'hello', 'foo': 'bye'}

Add fallbacks​

Runnable.with_fallbacks​

from langchain_core.runnables import RunnableLambda

runnable1 = RunnableLambda(lambda x: x + "foo")
runnable2 = RunnableLambda(lambda x: str(x) + "foo")

chain = runnable1.with_fallbacks([runnable2])

chain.invoke(5)
API Reference:RunnableLambda
'5foo'

Add retries​

Runnable.with_retry​

from langchain_core.runnables import RunnableLambda

counter = -1


def func(x):
global counter
counter += 1
print(f"attempt with {counter=}")
return x / counter


chain = RunnableLambda(func).with_retry(stop_after_attempt=2)

chain.invoke(2)
API Reference:RunnableLambda
attempt with counter=0
attempt with counter=1
2.0

Configure runnable execution​

RunnableConfig​

from langchain_core.runnables import RunnableLambda, RunnableParallel

runnable1 = RunnableLambda(lambda x: {"foo": x})
runnable2 = RunnableLambda(lambda x: [x] * 2)
runnable3 = RunnableLambda(lambda x: str(x))

chain = RunnableParallel(first=runnable1, second=runnable2, third=runnable3)

chain.invoke(7, config={"max_concurrency": 2})
{'first': {'foo': 7}, 'second': [7, 7], 'third': '7'}

Add default config to runnable​

Runnable.with_config​

from langchain_core.runnables import RunnableLambda, RunnableParallel

runnable1 = RunnableLambda(lambda x: {"foo": x})
runnable2 = RunnableLambda(lambda x: [x] * 2)
runnable3 = RunnableLambda(lambda x: str(x))

chain = RunnableParallel(first=runnable1, second=runnable2, third=runnable3)
configured_chain = chain.with_config(max_concurrency=2)

chain.invoke(7)
{'first': {'foo': 7}, 'second': [7, 7], 'third': '7'}

Make runnable attributes configurable​

Runnable.with_configurable_fields​

from typing import Any, Optional

from langchain_core.runnables import (
ConfigurableField,
RunnableConfig,
RunnableSerializable,
)


class FooRunnable(RunnableSerializable[dict, dict]):
output_key: str

def invoke(
self, input: Any, config: Optional[RunnableConfig] = None, **kwargs: Any
) -> list:
return self._call_with_config(self.subtract_seven, input, config, **kwargs)

def subtract_seven(self, input: dict) -> dict:
return {self.output_key: input["foo"] - 7}


runnable1 = FooRunnable(output_key="bar")
configurable_runnable1 = runnable1.configurable_fields(
output_key=ConfigurableField(id="output_key")
)

configurable_runnable1.invoke(
{"foo": 10}, config={"configurable": {"output_key": "not bar"}}
)
{'not bar': 3}
configurable_runnable1.invoke({"foo": 10})
{'bar': 3}

Make chain components configurable​

Runnable.with_configurable_alternatives​

from typing import Any, Optional

from langchain_core.runnables import RunnableConfig, RunnableLambda, RunnableParallel


class ListRunnable(RunnableSerializable[Any, list]):
def invoke(
self, input: Any, config: Optional[RunnableConfig] = None, **kwargs: Any
) -> list:
return self._call_with_config(self.listify, input, config, **kwargs)

def listify(self, input: Any) -> list:
return [input]


class StrRunnable(RunnableSerializable[Any, str]):
def invoke(
self, input: Any, config: Optional[RunnableConfig] = None, **kwargs: Any
) -> list:
return self._call_with_config(self.strify, input, config, **kwargs)

def strify(self, input: Any) -> str:
return str(input)


runnable1 = RunnableLambda(lambda x: {"foo": x})

configurable_runnable = ListRunnable().configurable_alternatives(
ConfigurableField(id="second_step"), default_key="list", string=StrRunnable()
)
chain = runnable1 | configurable_runnable

chain.invoke(7, config={"configurable": {"second_step": "string"}})
"{'foo': 7}"
chain.invoke(7)
[{'foo': 7}]

Build a chain dynamically based on input​

from langchain_core.runnables import RunnableLambda, RunnableParallel

runnable1 = RunnableLambda(lambda x: {"foo": x})
runnable2 = RunnableLambda(lambda x: [x] * 2)

chain = RunnableLambda(lambda x: runnable1 if x > 6 else runnable2)

chain.invoke(7)
{'foo': 7}
chain.invoke(5)
[5, 5]

Generate a stream of events​

Runnable.astream_events​

# | echo: false

import nest_asyncio

nest_asyncio.apply()
from langchain_core.runnables import RunnableLambda, RunnableParallel

runnable1 = RunnableLambda(lambda x: {"foo": x}, name="first")


async def func(x):
for _ in range(5):
yield x


runnable2 = RunnableLambda(func, name="second")

chain = runnable1 | runnable2

async for event in chain.astream_events("bar", version="v2"):
print(f"event={event['event']} | name={event['name']} | data={event['data']}")
event=on_chain_start | name=RunnableSequence | data={'input': 'bar'}
event=on_chain_start | name=first | data={}
event=on_chain_stream | name=first | data={'chunk': {'foo': 'bar'}}
event=on_chain_start | name=second | data={}
event=on_chain_end | name=first | data={'output': {'foo': 'bar'}, 'input': 'bar'}
event=on_chain_stream | name=second | data={'chunk': {'foo': 'bar'}}
event=on_chain_stream | name=RunnableSequence | data={'chunk': {'foo': 'bar'}}
event=on_chain_stream | name=second | data={'chunk': {'foo': 'bar'}}
event=on_chain_stream | name=RunnableSequence | data={'chunk': {'foo': 'bar'}}
event=on_chain_stream | name=second | data={'chunk': {'foo': 'bar'}}
event=on_chain_stream | name=RunnableSequence | data={'chunk': {'foo': 'bar'}}
event=on_chain_stream | name=second | data={'chunk': {'foo': 'bar'}}
event=on_chain_stream | name=RunnableSequence | data={'chunk': {'foo': 'bar'}}
event=on_chain_stream | name=second | data={'chunk': {'foo': 'bar'}}
event=on_chain_stream | name=RunnableSequence | data={'chunk': {'foo': 'bar'}}
event=on_chain_end | name=second | data={'output': {'foo': 'bar'}, 'input': {'foo': 'bar'}}
event=on_chain_end | name=RunnableSequence | data={'output': {'foo': 'bar'}}

Yield batched outputs as they complete​

Runnable.batch_as_completed / Runnable.abatch_as_completed​

import time

from langchain_core.runnables import RunnableLambda, RunnableParallel

runnable1 = RunnableLambda(lambda x: time.sleep(x) or print(f"slept {x}"))

for idx, result in runnable1.batch_as_completed([5, 1]):
print(idx, result)

# Async variant:
# async for idx, result in runnable1.abatch_as_completed([5, 1]):
# print(idx, result)
slept 1
1 None
slept 5
0 None

Return subset of output dict​

Runnable.pick​

from langchain_core.runnables import RunnableLambda, RunnablePassthrough

runnable1 = RunnableLambda(lambda x: x["baz"] + 5)
chain = RunnablePassthrough.assign(foo=runnable1).pick(["foo", "bar"])

chain.invoke({"bar": "hi", "baz": 2})
{'foo': 7, 'bar': 'hi'}

Declaratively make a batched version of a runnable​

Runnable.map​

from langchain_core.runnables import RunnableLambda

runnable1 = RunnableLambda(lambda x: list(range(x)))
runnable2 = RunnableLambda(lambda x: x + 5)

chain = runnable1 | runnable2.map()

chain.invoke(3)
API Reference:RunnableLambda
[5, 6, 7]

Get a graph representation of a runnable​

Runnable.get_graph​

from langchain_core.runnables import RunnableLambda, RunnableParallel

runnable1 = RunnableLambda(lambda x: {"foo": x})
runnable2 = RunnableLambda(lambda x: [x] * 2)
runnable3 = RunnableLambda(lambda x: str(x))

chain = runnable1 | RunnableParallel(second=runnable2, third=runnable3)

chain.get_graph().print_ascii()
                             +-------------+                              
| LambdaInput |
+-------------+
*
*
*
+------------------------------+
| Lambda(lambda x: {'foo': x}) |
+------------------------------+
*
*
*
+-----------------------------+
| Parallel<second,third>Input |
+-----------------------------+
**** ***
**** ****
** **
+---------------------------+ +--------------------------+
| Lambda(lambda x: [x] * 2) | | Lambda(lambda x: str(x)) |
+---------------------------+ +--------------------------+
**** ***
**** ****
** **
+------------------------------+
| Parallel<second,third>Output |
+------------------------------+

Get all prompts in a chain​

Runnable.get_prompts​

from langchain_core.prompts import ChatPromptTemplate
from langchain_core.runnables import RunnableLambda

prompt1 = ChatPromptTemplate.from_messages(
[("system", "good ai"), ("human", "{input}")]
)
prompt2 = ChatPromptTemplate.from_messages(
[
("system", "really good ai"),
("human", "{input}"),
("ai", "{ai_output}"),
("human", "{input2}"),
]
)
fake_llm = RunnableLambda(lambda prompt: "i am good ai")
chain = prompt1.assign(ai_output=fake_llm) | prompt2 | fake_llm

for i, prompt in enumerate(chain.get_prompts()):
print(f"**prompt {i=}**\n")
print(prompt.pretty_repr())
print("\n" * 3)
**prompt i=0**

================================ System Message ================================

good ai

================================ Human Message =================================

{input}




**prompt i=1**

================================ System Message ================================

really good ai

================================ Human Message =================================

{input}

================================== AI Message ==================================

{ai_output}

================================ Human Message =================================

{input2}

Add lifecycle listeners​

Runnable.with_listeners​

import time

from langchain_core.runnables import RunnableLambda
from langchain_core.tracers.schemas import Run


def on_start(run_obj: Run):
print("start_time:", run_obj.start_time)


def on_end(run_obj: Run):
print("end_time:", run_obj.end_time)


runnable1 = RunnableLambda(lambda x: time.sleep(x))
chain = runnable1.with_listeners(on_start=on_start, on_end=on_end)
chain.invoke(2)
API Reference:RunnableLambda | Run
start_time: 2024-05-17 23:04:00.951065+00:00
end_time: 2024-05-17 23:04:02.958765+00:00

Was this page helpful?